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method when there are errors in the system model is explored and
quantified. An algorithm is presented which, given an upper bound on
acceptable residual vibration amplitude, determines a shaping strat-
egy that is insensitive to errors in the estimated natural frequency. A
procedure for shaping inputs to systems with input constraints is out-
fined. The shaping method is evaluated by dynamic simulations and
hardware experiments.
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Chapter 1

Introduction

Vibration is a concern of virtually every engineering discipline. Mechanical

engineers continually face the problem of vibration because mechanical systems vibrate

when performance is pushed to the limit. The typical engineering solutions to vibration are

to design "stiff" systems, add damping to flexible systems, or develop a good controller.

Input shaping is another possibility for vibration control that can supplement the above

methods. If inputs (velocity, torque, voltage, etc.) are shaped properly, a system will

respond with a vibration-free movement [2, 5, 6, 7, 8, 9].

Vaaler and Seering [12] used an unorthodox geometry to build an assembly robot

with high stiffnes. They used a "four plus two" configuration to achieve the necessary six

degrees of freedom. By giving the robot's "right hand" four degrees of freedom and the

"left hand" two degrees of freedom, they avoided the flexibility that occurs in most six

degree-of-freedom robots that are designed with their axes in series.

Plump, Hubbard, and Bailey [4] examined the use of piezoresistive polymer films to

generate additional damping in a structure. Alberts, Hastings, Book, and Dickerson [10]

used a thin layer viscoelastic material to obtain passive damping that enhanced system

stability.

A great deal of work has been done in the area of feedback control of flexible

systems. Cannon and Schmitz [11] examined feedback control with noncolocated endpoint

position measuremnts for a one link flexible robot. Hollars and Cannon [3] compared four

different control strategies for a two-link robot with elastic drives.

An early form of input shaping was the use of posicast control by OJ.M. Smith [9].

This technique breaks a step of a certain amplitude into two smaller steps, one of which is
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delayed in time. The result is a reduced settling time for the system.

Farrenkopf [2] developed velocity shaping techniques for flexible spacecraft. He

showed that control of decoupled modes could be added without exciting vibration.

Swigert (5] demonstrated that torque shaping can be implemented on systems which

modally decompose into second order harmonic oscillators. Utilizing terminal boundary

conditions he generated shaped inputs that excited the vibration during movement, but

reduced the vibration to zero when the movement ended. Swigert also showed that vibration

from multiple modes could be eliminated by adaptive correction of the control law.

Singer and Seering [7] have shown that residual vibration can be significantly

reduced for single mode systems by employing an input shaping method that uses a simple

system model and requires very little computation. The system model consists only of the

system's natural frequency and damping ratio. Constraints on the system inputs result in

zero residual vibration if the system model is exact. When modeling errors exist, the

shaped input function does not keep the system vibration at zero, but it does reduce it to a

low level that is acceptable for many applications. Extending the method to multi-mode

systems is straightforward [6].

The shaping method involves convolution of a desired input with a sequence of

impulses to produce an input function that does not cause vibration. Selection of impulse

amplitude and timing dictate how well the system performs. Figure 1-1 shows how impulse

sequences can be convolved with system inputs to generate shaped inputs. Three-inpulse

sequences have been shown to yield particularly effective system inputs both in terms of

vibration suppression and response time [6]. The shaping method is effective in reducing

vibration in both open and closed loop systems.

My work concentrates on generating the impulse sequences to be used in the

convolution that produces the vibration-reducing inputs. Most of the work in this text

centers on vector diagrams, which are graphical representations of impulse sequences.
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Vector diagrams are used to generate and evaluate the vibration-reducing impulse

sequences. All sequences in this text will consist of three impulses, although the use of

more impulses can be beneficial in some applications. By modifying the constraints used to

produce the impulse sequences, a variety of sequences can be generated that give better

performance than those reported previously.
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Time Time Time

Impulse sequence System input Shaped input

Time Time Tume

Impulse sequence System input Shaped input

Figure 1.1: Convolving an impulse sequence with a system input
produces a "shaped" input.
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Chapter 2

Vector Diagrams

A vector diagram is a graphical representation of an impulse sequence. Vector

diagrams are graphs in polar coordinates (r-e space). A vector diagram is created by setting

r equal to the amplitude, Ai of the ifA impulse in a sequence and by setting 0 = oATi, where

o (rad/sec) is an arbitrary frequency and AT is the time delay from an arbitrary time zero to

the time when the iA impulse occurs. Figure 2-1 shows a typical impulse sequence and its

corresponding vector diagram.

Vector diagrams become useful tools for producing vibration-reducing impulse

sequences when o is set equal to the natural frequency of a system (io = o,,) and the time

of the first impulse is arbitrarily set to zero (AT, = 0). 1 When a vector diagram is created in

this manner, the resultant, R, from summing the vectors on the vector diagram has a special

significance. R is proportional to the amplitude of residual vibration of a second order

system of natural frequency (oy driven by a step convolved with the impulse sequence [6].

Because arbitrary inputs can be built as sums of steps, the amplitude of R is a measure of

system response for arbitrary inputs. This result enables us to calculate residual vibration

geometrically. The length of the resultant on the vector diagram is the amplitude of the

vibration and the angle of the resultant is the phase of the vibration relative to the system

response from the first impulse. Figure 2-2 compares a vector diagram representation of

vibration with a time domain representation of vibration for an undamped system. On a

vector diagram, vibration appears as a vector, whereas, in the time domain, vibration

appears as a sinusoidal function.

Iln this text, (o will refer to the modeling frequency and o,75 will stand for the actual natural frequency of
the system.
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Figure 2-1: An impulse sequence and the corresponding vector diagram.



A2 AR Al =The amplitude of the vibration

* after impulses A, andA 2
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Figure 2-2: The vector diagram and time domain representations of the same vibration.
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2.1 Canceling Vibration

If we place N vectors on a vector diagram such that the resultant equals zero, a

second-order system of natural frequency M given the corresponding time domain input will

execute a vibration-free movement. We can use this fact to create vibration-reducing input

functions directly from a vector diagram. We can place N arbitrary vectors on a vector

diagram and then cancel the resultant of the first N vectors with an N+lst vector. When the

vectors are converted into an impulse sequence, and the sequence is convolved with a step

input,2 the resulting shaped input will cause no residual vibration when applied to the

system. And, if the impulse amplitudes are normalized so they sum to one, the system will

come to rest at the point desired by the user.

The canceling vector, A,+, I is given by the equations:
L4M+II I R) 2 + IRYl12

R
x + tan-'[62] (1)

where:

RX = 140os0
R, = LZAsinO, (2)

The above equations demonstrate an interesting fact; there are an infinite number of

impulse sequences that will result in a vibration-free response. We can place N arbitrary

vectors on a vector diagram and then use Eqs. 1 to find an N+IS vector that will cancel the

N original vectors. When the N+l vectors from the vector diagram are used in the

convolution, a vibration-free input function is produced.

20r, for that matter, with any desired input function.
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2.2 The Effects of Damping

When damping is considered, the vector diagram must be modified in two ways.

First, we must use the damped natural frequency of the system to plot the vector diagram.

This corresponds to using:

0 = ;12 oAT (3)

when plotting the vector diagram. Second, the amplitudes of the vectors must be scaled to

account for damping. As time progresses, the amplitude of the canceling vector decreases.

For example, if we give a system an impulse with amplitude, A, at time zero, the impulse

that will cancel the system's vibration is located x (1800) out of phase with the first

impulse, but it has a smaller amplitude. Figure 2-3 demonstrates this result in the time

domain. The amplitude of the second impulse is [6]:

A2 = Ale--' = Ate- (4)

The effective amplitude of a vector, Ai at AT is the amplitude of a vector at time zero

whose vibration it could cancel. Written in equation form this means that the effective

amplitude, IAJ of a vector A is:

I AI (5)

This scaling effect of damping can be represented on a vector diagram by superimposing

the spiral, Ae-4. Any vector whose tip lies on the spiral has the effective amplitude of a

vector A at time zero. See Figure 2-4. When we attempt to cancel N vectors with an N+10

vector on a vector diagram we must assign each of the N vectors an effective amplitude

before using Eqs. 1 to solve for the resultant. When we include the effects of damping, the

equations describing the N+19 canceling vector are:

t e"+~ .. RP + tR12
IR

x,+l =+ tan-' [--'j (6)

where e =IO coAT, and R, and R. are given by:
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RX = 1-.4i cosOi

Ry = 4.isinei  (7)
'ee et

Response to A i

Systm Ai ......Response to A 2] oaspose mA A2 system AA2

response

% %

A T Time AT Tm

Figure 2-3: The scaling effect of damping on the "canceling" impulse.
A2 is smaller than A, because the vibration has been partially

damped out after AT.

0l
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vector diagram

Figure 2.4: The damping spiral, Ae-4e superimposed on a
vector diagram. Each of the vectors shown have the same effective amplitudes.
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Chapter 3

Insensitivity

It is possible to create an infinity of vibration-reducing input functions. The "best"

would seem to be the one that worked most effectively on a real system; they are all

vibration-free when the system model is exact. When the system model is not exact, some

residual vibration will occur when the system is moved. A plot of the vibration vs. error in

estimated natural frequency for a three-impulse sequence developed by Singer (6] is shown

in Figure 3-1 along with the corresponding vector diagram. This impulse sequence

produces a system response that is fairly insensitive to errors or changes in the system

parameters. That is, there is relatively little vibration in the system even when the resonant

frequency estimate is off by 20% as shown.

3.1 Effects of Modeling Errors on the Vector Diagram

Figure 3-1 can be obtained directly from a vector diagram if we analyze how a

modeling error changes the diagram. When the natural frequency of a system differs from

the assumed natural frequency, the error can be represented on a vector diagram by shifting

the vectors through an angle # (6]. If 0,, is the actual natural frequency of the system and

m is the modeling frequency, then the error in frequency is o - o,. The angle through

which the vectors are shifted, +, is related to the frequency error by the equation:

#i = (O- %(,)AT* (8)

The error in modeling causes a resultant to be formed on the vector diagram; the

vectors no longer satisfy Eqs. 6. The resultant that is formed represents the vibration that is

caused by the error in frequency.



-17-

28

vector diagram

: 0.90

a.
r~0.70

~'0.60

UO

0.40

0.30

0.20

0.10

0.00
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Normalized Modeling Error (ow/o.,)

Figure 3-1: Vector diagram of a three-impulse sequence and its insensitivity curve.
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Given that modeling errors cause a resultant, Re,, on a vector diagram, we can

compare the insensitivity of different input functions by plotting the amplitude of R, vs.

the error in frequency. For now, the errors in the damping ratio are ignored because the

errors in natural frequency have been shown to be far more important [6].

If we plot an "insensitivity curve" like the one shown in Figure 3-1, we can determine

how much vibration will result from a given error in estimated frequency. To make an

insensitivity curve, we must develop an expression for the resultant as a function of the

error in frequency (o - co).

If we subtract the angle due to the error, € from the original angle, 0, then the i'*

vector on the vector diagram has a total angle of:

9. (9)

Given this, the amplitude of the resultant is:

(10)

where:
R., = L4. cos(Oi-' )

= L4 sin(Oj-.4) (11)

and:

A

oo , - z(12)

Eq. 10 is the expression that we were seeking. It gives the amplitude of the resultant as a

function of the error in frequency.



3.2 Defining Insensitivity

To compare impulse sequences and determine which is the "best" for decreasing

vibration in the presence of modeling errors, we need a formal criterion. Therefore, the

insensitivity of a sequence will be def'ied as the width of the insensitivity curve at a given

level of residual vibration. If the acceptable level of vibration is 5%, then we can draw a

horizontal line across the insensitivity curve at 5%. The distance between the points of

intersection is the insensitivity. For example, the insensitivity of the impulse sequence

shown in Figure 3-1 is 0.286, because it causes less than 5% of the step vibration from

0.857 to (o1o3/Y,),,,= 1.143.

Now that we have a precise definition for insensitivity, we can compare various

impulse sequences quantitatively.

3.3 Increasing Insensitivity by Changing Vectors

The three impulses in the function shown in Figure 3-1 are in the ratio 1:2:1 and are

located on the vector diagram at 0, x, and 2c respectively. We know that we can arbitrarily

place two vectors on the vector diagram and cancel them with a third, so we can vary the

amplitudes and angles of the first two vectors and then cancel the vibration they cause with

a third vector. By the definition of a vector diagram, the angle of the first vector is always

zero and its amplitude is one. Any change from the value of one will simply scale the

second and third vectors accordingly.

If we modify the impulse sequence in Figure 3-1 by placing the second vector at an

angle less than x (keeping the amplitude fixed at 2), the insensitivity curve changes in an

interesting way. It gets wider and shifts to the right. Figure 3-2 shows the insensitivity

curve when the second vector is at 1540. The insensitivity for this input function is 0.408

(0.93 to 1.338), a 43% improvement over the impulse sequence of Figure 3-1. A drawback
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is that the insensitivity curve is skewed to the right, i.e., it is more insensitive to errors that

are higher in frequency than the modeling frequency. This may be a desired property of an

input function if the system being moved increases its natural frequency during some part

of its operation [1]. However, for most applications it is desirable to have equal

insensitivity on either side of of the modeling frequency ((WCoY,) = 1).

We can shift the insensitivity curve of Figure 3-2 back to the left by choosing a new

modeling frequency that is in the center of the skewed insensitivity curve. The modeling

frequency is not shifted to get it closer to the actual natural frequency of the system, rather

it is shifted to obtain an insensitivity curve that has equal insensitivity on either side of the

modeling frequency. When the modeling frequency is shifted to the center of the skewed

curve for the above example (02 = 1540), the new modeling frequency is: (o.,,, = 1. 134o.

Adjusting so that the new modeling frequency is at one causes the insensitivity curve to

shift to the left and shrink. The shrinkage occurs because the new modeling frequency is

larger than the original, so when (o(ok, 5) is recalculated using the larger o, the difference

between W%),, and (w/o)j,,,, decreases. In the above example, the "true"

insensitivity at 5% vibration is 0.36; smaller than the "skewed" insensitivity of 0.408, but

still much larger than the insensitivity of the 1:2:1 impulse sequence shown in Figure 3-1.
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Figure 3-2: Insensitivity curve when the 2md vector is placed at
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3.4 Increasing Insensitivity by Relaxing the Zero Vibration Constraint

In the cases discussed previously, it was assumed that the residual vibration should be

zero when the estimated natural frequency exactly matched the system natural frequency.

As we shall see, the relaxation of this constraint can improve insensitivity. We introduce an

error at the modeling frequency if we do not exactly cancel the first and second vectors with

the third vector, i.e., do not use the m.xact solution given by Eqs. 6. For most systems, it

would seem desirable to have an insensitivity curve which is symmetric about the modeling

frequency. So, to generate an error at the modeling frequency and maintain symmetrical

insensitivity, we should change the amplitudes of the vectors, but always place them at 0, x,

and 2n.

The largest insensitivity that has been discovered for a three-impulse sequence occurs

when the error at the modeling frequency exactly matches the vibration limit, V,,.3 and the

insensitivity curve falls off to zero on both sides of the modeling frequency. See Figure 3-3.

This "hump" in the insensitivity curve widens the curve and, therefore, increases

insensitivity.

Using the above conditions, we can derive the three-impulse sequence that yields the

maximum known insensitivity for a given vibration limit. The insensitivity curve should be

symmetrical about the modeling frequency, so when vectors are shifted by a modeling error

or a shift in system natural frequency, the angle of the third vector, 03, is always twice the

angle of the second vector, 02. In equation form:

03 = 202. (13)

When the resultant at the modeling frequency is set equal to the vibration limit,Vi,,, we

have:

tA l - IA21 + IA31 = V(I,( +1 + IA21+ IA31) (14)

3V M. for the above examples was 5%; that is, the allowable residual is 5% of the residual which would
have resulted had the system been given a step input.
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A negative value is assigned to IA21 on the left side of Eq. 14 because A2 points in the

opposite direction of A, and A3 on the vector diagram. We have arbitrarily set IAI equal to

one, so we can rearrange Eq. 14 to get an expression for IA21:

(1-V6,Xl+A 3)
1 l = (15)(l+Vli,)

Because the insensitivity curve falls to zero on both sides of the modeling frequency,

the resultant on the vector diagram equals zero when vector A2 is at some angle, 02 and

vector A3 is at some angle, 03. This corresponds to:

0 = 1 + IA21cosO2 + IA3 ICOS4 3  (16)
0 = IA2IsinO2 + IA3 IsinO 3  (17)

Eqs. 13, 15, 16, and 17 are four equations with five unknowns, (A 2,,0 2, A3,0 3, and

Vi,,). If an upper bound on allowable vibration is known, the sequence that yields the

maximum insensitivity for the given V. can be determined. Putting Eq. 13 into Eq. 17 and

reducing gives:
LA21 = -21Al 31cos 2  (18)

Combining Eq. 15 with Eq. 18 we get cos0 2 in terms of IA3l:

(I-V,,XI+IA
31)COSO> - - 7J- (+ (19)

If we put Eqs. 13 and 15 into Eq. 16, we get:
(l[-VXl+13 ) co 2 + 2A 3lcos20 2 - 1A31 0 (20)

L ( I+Vr",) S*

Putting Eq. 19 into Eq. 20 and solving for IA31, gives:

IA31 = 1 (21)

We can use the result of Eq. 21 to solve Eq. 15 for IA21. When this is done, the result is:

2(1-V,) (22)t-(t+vg,)

Therefore, the three-vector combination that yields the largest known insensitivity for

a given vibration limit is:is
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[All = 1, 01=0

IA2 I - 2(l-Vii.) 02 =  (23)

LA3 = 1, 03 = 27

Converting the above vectors into the time domain we find that the three-impulse

sequence that yields the largest known insensitivity for a given vibration limit is:

Al = 1, AT, = 0
2(l-Vr.)_

A2 = 2(t+Vr,) 'AT 2 _=.rc (24)
(24(Il+V6.)

A3 = 1, AT3 = 27

Figure 3-3 shows the insensitivity curve for the above impulse sequence when the

vibration limit is set to 5%. For larger vibration limits, insensitivity increases significantly

as Figure 3-4 demonstrates. The insensitivity increases from 0.398 to 0.56 when Vr.. is

changed from 5% to 10%.

When the driven system has viscous damping the amplitudes in Eqs. 24 must be

replaced by effective amplitudes and the damped natural frequency must be used. The

sequence then becomes:

Al = 1, AT, = 0

A2 2(1-Vs,) .49 A - X (5

(l+Vs) '- (25)

27c
A3 = e-4, AT 3 =

where w is the modeling frequency and 4 is the approximate damping ratio of the system.
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Figure 3-3: Insensitivity curve for vibration limit of 5%.
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Chapter 4

Input Shaping

The following steps should be taken when shaping a system input:

1. Determine the system's natural frequency and damping ratio. (The
insensitivity provided by this method allows for substantial errors in the
measurement of these two parameters).

2. Determine the impulse sequence for the system by using Eqs. 25.

3. Normalize the amplitudes of the impulses so they sum to one.

4. Convolve the normalized impulse sequence with any desired input.

5. Use the result of the convolution as the input to the system.

The shaped input causes the system to arrive at the position it would have if the

desired input had been used. However, when the movement is finished, the system's

vibration will be much less than if the desired input had been used. In addition, the

vibration will be less than the established vibration limit, provided the system model is

within the interval shown on the insensitivity curve. The cost of the improved performance

of the system is a time penalty equal to the period of the system's natural frequency. (The

shaped input takes one period of the natural frequency longer to execute than the unshaped

input). For most systems, however, the time penalty is not a real penalty because the

vibration caused by an unshaped input usually takes more than one period to decay. A

system can actually be moved faster with shaped inputs because at the end of the input

sequence, the system is at the desired position rather than oscillating about the desired

position.
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4.1 Digital Systems

The impulse sequence given by Eqs. 25 was derived based on the assumption that the

amplitude of the input can be changed at any time. This is not possible with digital systems

because the inputs can be changed only at discrete time increments. The impulse sequence

of Eqs. 25 can, however, be transformed into an equivalent sequence where the impulses

occur only at the discrete time steps. The transformation is straightforward and is discussed

in detail in reference [6]. Basically, the transformation works by replacing an impulse that

is not located at a discrete time step with two impulses that are located at the digital time

steps on either side of the impulse to be replaced. The two impulses are chosen so as to be

equivalent to the impulse they replace.

4.2 Constant Amplitude Inputs

When a system is driven by constant amplitude inputs; for example, when the space

shuttle is moved by its stabilizing thrusters; the shaped input cannot be implemented in its

original form. (The result of the convolution cannot be used because it requires varying the

amplitude of the input). Although we cannot get all of the vibration-reducing ability of this

input-shaping method into a control system that uses constant amplitude inputs (pulses),

there is an approximate method that works well when the shortest possible driving pulse is

small compared to the period of the system's natural frequency. When this is the case, the

result of the convolution4 can be modified by converting the amplitude of the three pulses

into the width of the three pulses. The pulse with the smallest amplitude should be assigned

the shortest width possible. The widths of the other pulses are then adjusted according to

the height to width ratio used to convert the smallest pulse.

*The convolution of the impulse sequence with the shortest possible driving pulse will produce three pulses
of unequal amplitudes separated by some amount of time. The greater the separation between the pulses, the
better the approximate method will work.
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Once the three constant-amplitude pulses have been determined, their centers should

be placed at the time spacings given by Eqs. 25. When this is done, one half of the first

pulse will exist in negative time, a simple time shift will yield a three-pulse sequence that

moves the system with much less vibration than would occur if a single pulse had been used

to achieve the same movement.

The approximate method for constant amplitude inputs can be summarized as follows

(see Figure 4-1):
1. Convolve the impulse sequence of Eqs. 25 with a pulse equal to the shortest

possible driving pulse.

2. Modify the result of the convolution by converting the amplitude of each
pulse into a proportional width.

3. Center the three constant amplitude pulses around the times given by Eqs. 25.

4. Multiply the width of the three pulses by a proportionality constant to achieve
the length of movement desired.

5. Shift the pulses to place the first pulse at zero time.

The above method is a simple and straightforward process for dealing with the

restriction of constant amplitude inputs. The method significantly reduces vibration when

the input pulses can be made much shorter than the period of the system's natural

frequency. The next chapter gives the results of dynamic simulations that demonstrate the

above method's vibration reducing ability.
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Result of convolution.
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St &T,4,St AT 2+St Taw

Figure 4-1: Approximate shaping method for systems with constant amplitude
inputs.
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Chapter 5

Experimental Results

The performance of the impulse sequence given by Eqs. 25 was verified by dynamic

simulations and with hardware experiments.

5.1 Simulation of Single Mode Control

The ability of the shaping method to reduce vibration was shown by implementing it

on the simple two-mass lumped parameter model shown in Figure 5-1. In the first series of

tests, the following values were used for the parameters:

MI =M 2 = 1

k =19.74

b =0.

k

F(t) M M

xl x 2
b

X 1  X 2

Figure 5-1: Simple lumped parameter model used for simulating
a single-mode system

The system was moved by giving a step in the force, F(t), on M. The amplitude of

the step was one and it was applied fiom 0.5 sec. to 0.7 sec. The step input and the

corresponding system response is shown in Figure 5-2.
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The following five steps were then taken to shape the step input so the residual

vibration of the system would be reduced to five percent of the vibration that resulted from

the step input.
1. The system's natural frequency was determined to be 2n. 5

2. The values of V,, = 0.05 and co = 2n were put into Eqs. 24, giving an impulse
sequence of:

Al --- 1, AT, = 0

A2 = 1.81, AT2 = 0.5 (26)

A3 = 1, AT3 = 1

3. The amplitudes of the impulses were normalized to give: A, = 0.262, A2 =
0.475, A 3 = 0.262.

4. The normalized sequence was convolved with the step input shown in Figure
5-2.

5. The result of the convolution was used as an input to the system.

The shaped input and the corresponding system response are shown in Figure 5-3.

By comparing Figures 5-2 and 5-3 we can see that the shaped input reduced the residual

vibration just as predicted. Figure 5-3 also shows the time penalty that is incurred when the

input is shaped. The time penalty is equal to one period of the natural frequency (in this

case, I sec). The step input ends at 0.7 sec., but the shaped input ends at 1.7 sec.

By changing the value of V.. to zero and repeating steps 2-5, the residual vibration

can be reduced to zero as shown in Figure 5-4. The sequence that is produced by setting

V., equal to zero is the same as Singer's three-impulse sequence [6].

2k
M
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Figure S-2: A step input and the corresponding response of

the single-mode system.
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Figure 5-3: The shaped input when Vr. = 0.05 and the
corresponding response of the single-mode system.
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Figure 5-4: The shaped input when V,. = 0 and the
corresponding response of the single-mode system.



-36-

5.1.1 Single Mode With Damping

Damping was added to the dynamic simulation by setting the damper of the lumped

parameter model equal to 0.5. Figure 5-5 shows the response of the damped system to a

step input. The damped natural frequency and damping ratio were calculated and then put

into Eqs. 25 to produce the vibration reducing impulse sequence. Vs, was set to zero and

the impulse sequence was convolved with the step input. Figure 5-6 shows the shaped

input and the corresponding system response.

5.2 Energy Consumption of Shaped Inputs

In addition to reduced settling time, input shaping has another benefit: it saves

energy. Qualitatively, it can be reasoned that because it takes energy to excite vibration, the

shaped inputs require less energy than unshaped inputs. We can calculate the energy

savings by integrating the force times velocity with respect to time. When this is done for

the movement of the damped system above, we find that the step input requires

approximately 0.018 joules, but the shaped input uses only about 0.010 joules. The shaped

input requires less energy because it decreases the energy loss in the damper.6 A plot of the

energy used by the inputs vs. time is shown in Figure 5-7.

6The average velocity difference across the damper is less when the input is shaped.
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Figure 5-6: The shaped input when Vi, = 0 and the
corresponding response of the damped single-mode system.
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5.3 Simulation of Constant Amplitude Input Control

When a system can only be driven by constant amplitude inputs, the shaped input that

results from the convolution cannot be used. (This was discussed in the previous chapter.)

The approximate method proposed in the last chapter was tested on a computer simulation

developed to mimic the rotational dynamics of the space shuttle deploying the Hubble

space telescope. The dynamic model is shown in Figure 5-8. The model consists of two

unequal rotational inertias connected by a torsional spring. The large inertia (the shuttle) is

acted on by a small constant torque (a gravity gradient) and it can be rotated in the opposite

direction by a large constant amplitude torque (a stabilizing jet). The values for the system

parameters were obtained from the DRS and SDAP simulations that Draper Laboratory

uses to verify and plan shuttle missions.

0

)e Tgravity

Figure 5-8: Rotational inertia dynamic model.

The control action of the dynamic model was designed to copy the actions of the

shuttle's digital autopilot (SDAP). Basically, the simulation attempts to maintain the large

rotational inertia within a given angular region. When the inertia is rotated out of the
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region by the gravity torque, a constant amplitude torque is applied in the opposite direction

to drive the inertia back into the desired region. This would correspond to the firing of a

stabilizing jet to reorient the shuttle. The reorienting torque causes large rotational

oscillations in the system. Figure 5-9 shows the typical dynamic response of the model to a

reorienting input. By 280 sec. the gravity torque has caused the large inertia to rotate out of

the desired angular region. A large reorienting torque is applied to drive the inertia back

into the desired region.

The procedure for shaping constant amplitude inputs that was outlined in the previous

chapter was used to develop a shaped input for the above simulation. The system response

to the shaped input is shown in Figure 5-10. A comparison between Figure 5-9 and Figure

5-10 reveals that the shaped input significantly reduces the oscillations in the system. The

results shown in Figure 5-10 are impressive because the reorienting torque could be turned

on and off at any time. However, when the system has a large digital time step the

approximate shaping method is not as effective because the width of the input pulses cannot

be set arbitrarily. Developing a method for dealing with constant amplitude inputs and

large digital time steps is an area of ongoing research.

0
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Figure 5-9: Response of rotational inertia model to unshaped input.
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Figure 5-10: Response of rotational inertia model to shaped input.
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5.4 Hardware Experiments

The hardware verification of the impulse sequence was performed on the assembly

robot described in reference [12]. The experimental setup is shown in Figure 5-11. A steel

beam with a mass at one end was attached to the turntable of the robot. The table was

driven in the theta direction by a dc motor and its position was determined by an optical

encoder.

When the table was given a step in position, large oscillations were induced in the

system. Figure 5-12 shows a typical system response to a step input. Data from ten step

responses were recorded and the vibration amplitudes were averaged to get a baseline value

for the vibration caused by a step input. The amplitude of the vibration was determined by

fimding the highest value in the data and then subtracting the lowest following value.

The system parameters were determined by examining the data from a step response.

The natural frequency was found to be 2.8 Hertz and the damping ratio was approximated

as 0.05. The step input was then shaped by the impulse sequence given by Eqs. 25 with the

vibration limit set to 5%. Figure 5-13 shows the system response to the shaped input. The

amplitude of the vibration in Figure 5-13 is only 5% of the baseline value for a step input.

The residual vibration of the system can be virtually eliminated by setting the vibration

limit to zero. See Figure 5-14.

5.4.1 Insensitivity Curves

Insensitivity curves for the impulse sequence were experimentally determined by

purposely introducing errors in the system model. The experimentally determined natural

frequency was chosen as the "exact" frequency (o). = 2.8 Hz). Impulse sequences were

then derived for frequencies ranging from 0.6o to l.8(o, (1.8 Hz - 5.04 Hz). The value

for the damping ratio was kept at 0.05 for all cases. Each impulse sequence was used
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Figure 5- 11: The experimental setup: Robot turntable and steel
beam with a large mass attached to the end.
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Figure 5-12: Typical system response to a step in position.
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Figure 5-13: System response to a shaped step input when Vii,, = 0.05.
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to shape the step command and the shaped input was applied to the system. The amplitude

of the resulting vibration was recorded. The amplitude value was then divided by the

baseline value to get the percentage of the step vibration caused by the shaped input. By

plotting the percentage of the step vibration versus the normalized modeling error (Wo,),

insensitivity curves were obtained.

Figure 5-15 shows the experimentally determined insensitivity curve when the

vibration limit was set to 5%. Figure 5-15 shows the experimental curve has the same

general shape as the theoretically determined insensitivity curve (Figure 3-3). The curve

has a non-zero value when the system model is correct and it slopes down toward zero on

either side of the modeling frequency. The experimentally determined insensitivity for VA ,,

= 0.05 is approximately 0.42. (The vibration is less than 5% from 0.82 to 1.24 on the

insensitivity curve). The theoretical insensitivity when Vain equals 0.05 is 0.398.

The vibration limit was set to 10% and the above tests were repeated. Figure 5-16

shows the resulting insensitivity curve. The insensitivity increased to approximately 0.67

(The vibration was less than 10% from 0.75 to 1.42 on the insensitivity curve). The

theoretical insensitivity when V.,, equals 0.10 is 0.56.

The roughness of the insensitivity curves is largely due to the resolution of the optical

encoder. The vibrations resulting from the shaped inputs are only a few ticks on the

encoder. For example, a vibration that is 5% of the baseline value for a step is only three

encoder spacings. Another limitation on the accuracy of the experimental tests is the servo

rate (1 kHz) of the robot controller. The shaped input that results from the convolution

does not usually change at exactly the same time that the servo loop is called. As a result,

the change in input must occur during the next call of the servo loop. This error causes the

experimental value for the vibration amplitude to differ slightly from the theoretical value.
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Chapter 6 0
Discussion

It has been shown that a variety of impulse sequences can be convolved with a

desired system input to create a shaped input that moves a system without causing residual

vibration. By plotting the residual vibration of the system vs. the error in estimated natural

frequency, we can determine how insensitive the impulse sequence is to shifts or errors in

the natural frequency of the system. Some of the impulse sequences cause a skewed

insensitivity, so the input function is more insensitive to errors in one direction. When an

upper bound on the acceptable level of residual vibration is known, the three-impulse

sequence that gives the maximum known insensitivity can be determined.

When the system inputs are constrained to one amplitude, an approximate method

can be used to shape the input by varying the width of the inp,-i instead of the amplitude.

The approximate method works well when the constant amplitude input can be turned on or

off at any time. When the constant amplitude constraint is combined with a large digital

time step, the shaping method becomes difficult to implement.

Computer simulations and hardware experiments verified the vibration-reducing

ability of the impulse sequences. The hardware experiments showed that the impulse

sequences were more insensitive than the theory predicts. The theory is based on the

assumption that the system is a second-order damped harmonic oscillator. It is possible that

nonlinear affects, such as stiction, caused the impulse sequences to be more insensitive in

practice than in theory. The limitations of the hardware, such as the optical encoder

spacing and the motor servo rate, may have also contributed to the high value for the

experimentally determined insensitivity.

o
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